

Fronius Energy Package

Installations instructions

Grid-connected inverter

Contents

Installation location and position	5
Explanation of safety symbols	5
Safety	5
Proper use/intended purpose	6
Inverter installation location	7
	8
	0
·	11
	12
	2
	2
	13
	4
	16
	17
	17
	18
Closing the battery cabinet	
Fitting the inverter mounting bracket	
Safety	
Selecting wall plugs and screws	
Recommended screws	
Opening the inverter	
Do not warp or deform the mounting bracket	23
Fixing the mounting bracket to a wall	23
Fitting the mounting bracket to a mast or support	24
Fitting the mounting bracket to metal supports2	24
Connecting the inverter to the public grid (AC side)	25
Safety	25
Monitoring the Grid	25
AC terminals	25
Type of AC cable	
Connecting aluminium cables	
Cross-section of the AC cable	
Connecting the inverter to the public grid (AC)	
Maximum fuse rating on alternating current side	
Connecting solar module strings to the inverter (DC side)	
Safety	
General comments regarding solar modules	
DC terminals	
Connecting aluminium cables	
Do not ground the poles of the solar modules	32
	32
	35
Overview of Fronius Energy Package DC cabling	
Connecting Fronius Symo Hybrid, Fronius Solar Battery and Fronius Smart Meter	
	37
	38
	38
Attaching the inverter to the mounting bracket	
	łC
	12
Starting the inverter for the first time	12
Activating the emergency power function4	4
Prerequisites for emergency power mode	4
Accessing the CONFIG menu4	4
Selecting alternative (emergency power) setup	-5
	15
Installing Fronius system monitoring – Overview	
Safety	

Using for the first time	46
Information to help you work through the Solar Web wizard	
Notes regarding maintenance	
Maintenance	
Cleaning	

Installation location and position

Explanation of safety symbols

DANGER! Indicates immediate and real danger. If it is not avoided, death or serious injury will result.

WARNING! Indicates a potentially dangerous situation. Death or serious injury may result if appropriate precautions are not taken.

CAUTION! Indicates a situation where damage or injury could occur. If it is not avoided, minor injury and/or damage to property may result.

NOTE! Indicates a risk of flawed results and possible damage to the equipment.

IMPORTANT! Indicates tips for correct operation and other particularly useful information. It does not indicate a potentially damaging or dangerous situation.

If you see any of the symbols depicted in the "Safety rules" chapter, special care is required.

Safety

WARNING! Incorrect operation or poorly executed work can cause serious injury or damage. Commissioning of the hybrid system may only be carried out by trained personnel in accordance with the technical regulations. Read the Installation and Operating Instructions before installing and commissioning the equipment.

WARNING! Shoddy workmanship can cause serious injury and material damage. A surge protection device must only ever be installed and connected by a qualified electrical engineer.

Follow the safety rules! Make sure that both the AC side and the DC side of the inverter are de-energised before carrying out any installation or connection work.

Fire prevention

CAUTION! Risk of damage to inverters and other live photovoltaic system components due to poor or unprofessional installation.

Poor or unprofessional installation can cause overheating of cables and terminal connections and result in arcs. These can cause heat damage, which in turn may lead to fires.

Observe the following when connecting AC and DC cables:

- Tighten all terminals to the torque specified in the Operating Instructions

- Tighten all grounding terminals (PE / GND), including free ones, to the torque specified in the Operating Instructions
- Do not overload cables
- Check cables for damage and verify that they are laid correctly
- Take note of the safety instructions, Operating Instructions and any local connection regulations

Using fastening screws, always screw the inverter firmly to the mounting bracket to the torque specified in the Operating Instructions. Ensure that the fastening screws are tight before starting the inverter!

NOTE! Fronius will not accept any costs associated with production downtimes, installer costs, etc., that may arise as the result of a detected arc and its consequences.

Fronius accepts no liability for fires that can occur despite the presence of the integrated arc detection/extinguishing system (e.g. fires caused by a parallel arc).

NOTE! After an arc has been detected, the entire photovoltaic system must be checked for possible damage before resetting the inverter.

Observe the manufacturer's connection, installation and operating instructions at all times. To reduce the hazard potential to a minimum, perform all installation and connection work carefully according to the instructions and regulations.

Refer to the device Operating Instructions / Installation Instructions for the tightening torques to be used at the relevant terminal connections.

Proper use/intended purpose

The solar inverter is exclusively intended for charging a Fronius Solar Battery with direct current from solar modules, or for converting this direct current into alternating current and feeding it into the public grid or the household network in emergency power mode.

The following actions constitute improper use:

- Any use above and beyond this purpose
- Making any modifications to the inverter that have not been expressly approved by Fronius
- Installing components that are not distributed or expressly approved by Fronius
- Operating the device with a battery that has not been approved by Fronius
- Operating the equipment with an energy meter that has not been approved by Fronius

Fronius shall not be liable for any damage resulting from such action. No warranty claims will be entertained.

Proper use also includes:

- Carefully studying and obeying the Installation and Operating Instructions
- Performing all stipulated inspection and maintenance work

When designing the photovoltaic system, ensure that all of its components are operated within their permitted operating ranges at all times.

Observe all the measures recommended by the solar module manufacturer to ensure that the solar module retains its properties in the long term.

Observe the stipulations of the power supply company concerning energy fed into the grid, emergency power mode and the operation of storage systems.

The Fronius Symo Hybrid is a grid-connected inverter with an emergency power function – it is not a stand-alone inverter. The following restrictions must therefore be observed in emergency power mode:

- Emergency power mode may amount to max. 15% of the normal inverter operating time
- Emergency power mode must be in operation for (at least) 1500 hours

Inverter installation location

The inverter is suitable for installation indoors.

The inverter is suitable for installation outdoors.

Its IP 65 degree of protection means that the inverter is resistant to water jets from any direction and can also be used in damp environments.

In order to minimise the heating up of the inverter, do not expose it to direct insolation. Install the inverter in a protected location, e.g. in the vicinity of the solar modules or beneath the eaves.

U_{DCmax} at an altitude of:
0 to 2000 m = 1000 V
2000 m = 2000 m = 900 V
2000 to 2500 m = 900 V
2500 to 3000 m = 815 V
3000 to 3400 m = 750 V

IMPORTANT! The inverter must not be installed or used at altitudes above 3400 m.

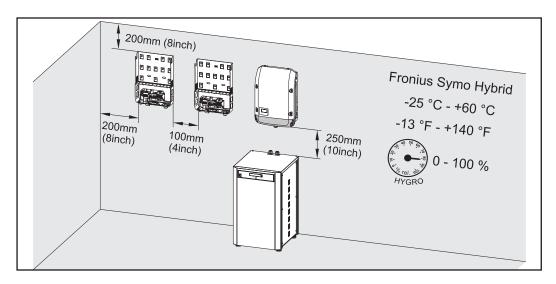
Do not install the inverter in:

 areas where ammonia, corrosive vapours, acids or salts are present (e.g. fertiliser stores, ventilation openings from cattle sheds, chemical plants, tanneries, etc.)

As the inverter generates low levels of noise under certain operating conditions, it should not be installed close to living areas.

Do not install the inverter in:

- places where there is an increased risk of damage from farm animals (horses, cattle, sheep, pigs, etc.)
- stables or adjoining areas
- storage areas for hay, straw, chaff, animal feed, fertilisers, etc.


Do not install the inverter in:

- places and environments subject to a heavy build-up of dust
- places and environments in which a heavy build-up of dust containing conductive particles (e.g. iron chips) is likely

Do not install the inverter in:

- greenhouses
- storage or processing areas for fruit, vegetables or winegrowing products
- places used to prepare grain, green fodder or animal feeds

Install only on a solid surface

Max. ambient temperatures: -13 °F / +140 °F (-25 °C / +60 °C)

Relative humidity: 0 - 100%

The airflow within the inverter is from the right to the top (cold air taken in from the right, hot air dissipated out of the top).

The exhaust air can reach a temperature of 70 °C.

If the inverter is installed in a switch cabinet or a similar sealed area, then forced-air ventilation must be provided to ensure adequate heat dissipation.

If the inverter is to be installed on the outer wall of a cattle shed, maintain a minimum all-round clearance of 2 m between the inverter and all ventilation and other openings in the building.

The installation location must not be exposed to ammonia, corrosive vapours, salts or acids

Installation location of battery

The battery must only be installed indoors. To prevent the build-up of a potentially explosive mixture in the event of a fault, the battery must be installed in a room with a volume of at least 8 m³.

In order to minimise the heating up of the battery, do not expose it to direct insolation.

Do not install the battery in:

 areas where ammonia, corrosive vapours, acids or salts are present (e.g. fertiliser stores, ventilation openings from cattle sheds, chemical plants, tanneries, etc.)

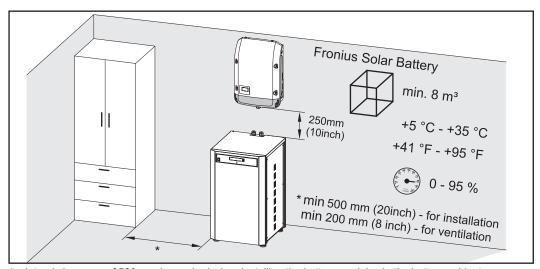
As the battery generates low levels of noise under certain operating conditions, it should not be installed close to living areas.

Do not install the battery in:

- places where there is an increased risk of damage from farm animals (horses, cattle, sheep, pigs, etc.)
- stables or adjoining areas
- storage areas for hay, straw, chaff, animal feed, fertilisers, etc.

Do not install the battery in:

- places and environments subject to a heavy build-up of dust
- places and environments in which a heavy build-up of dust containing conductive particles (e.g. iron chips) is likely


Do not install the battery in:

- greenhouses
- storage or processing areas for fruit, vegetables or winegrowing products
- places used to prepare grain, green fodder or animal feeds

Do not install the battery in:

- buildings exposed to a risk of flooding

 * a lateral clearance of 500 mm is required when installing the battery modules in the battery cabinet

Install only on a solid, level surface

Max. ambient temperatures: from +5 °C to + 35 °C (+41 °F to + 95 °F)

Relative humidity: 0 - 95%

Installation position of inverter

The inverter is designed to be installed vertically on a vertical wall or pillar.

The inverter is suitable for horizontal installation.

The inverter is suitable for installation on a sloping surface.

Do not install the inverter on a sloping surface with its connection sockets facing upwards.

Do not install the inverter at an angle on a vertical wall or pillar.

Do not install the inverter horizontally on a vertical wall or pillar.

Do not install the inverter on a vertical wall or pillar with its connection sockets facing upwards.

Do not install the inverter such that it overhangs with its connection sockets facing upwards.

Do not install the inverter such that it overhangs with its connection sockets facing downwards.

Do not install the inverter on the ceiling.

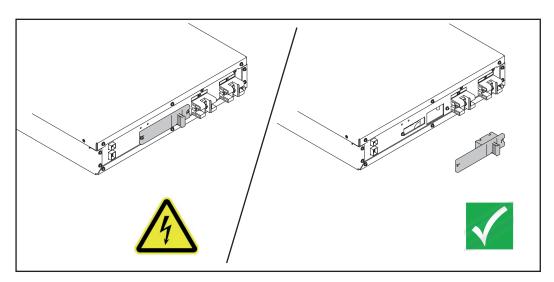
Installation position of battery

Place the battery on a solid, level surface only. In addition, secure the battery to the rear panel.

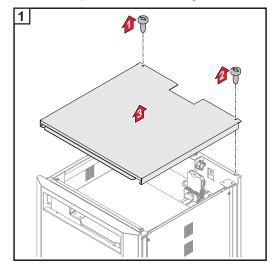
Assembling and connecting the battery

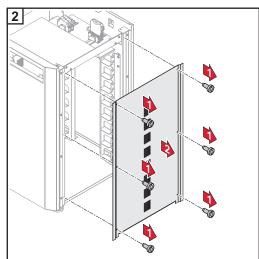
Safety

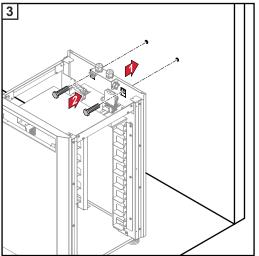
WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules that are exposed to light.


- Make sure that both the AC side and the DC side of the solar battery are deenergised before making any connections.
- Only an authorised electrical engineer is permitted to connect this equipment to the public grid.

NOTE! Ensure that the battery controller is switched off during installation.

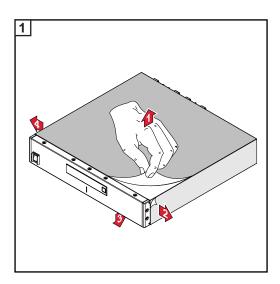


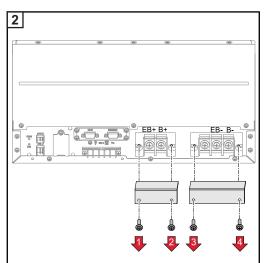

NOTE! The fuse for the battery modules must be removed while installation is in progress.

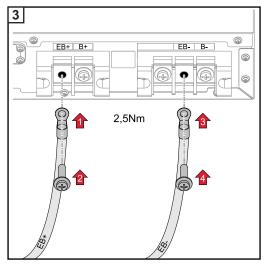


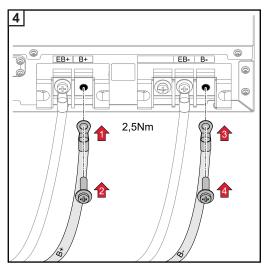
Fixing the battery cabinet to the wall

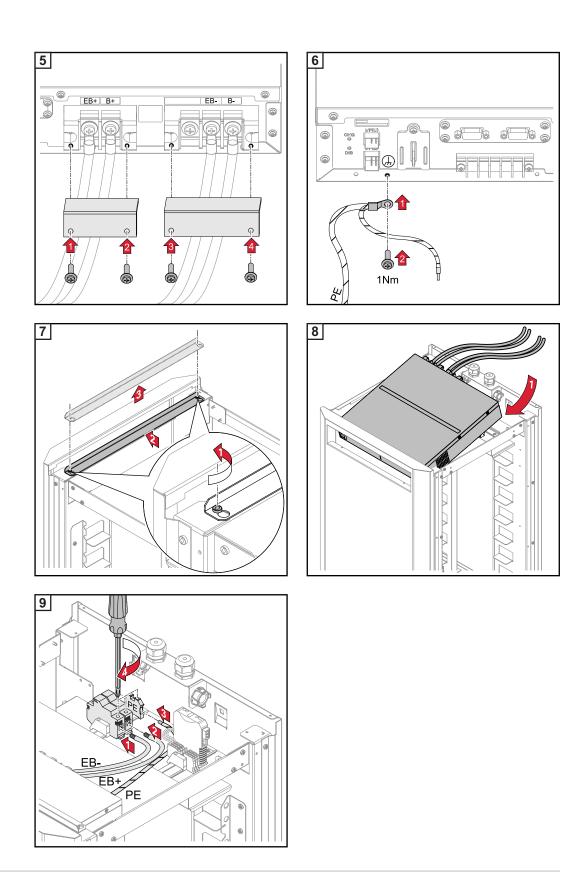
The battery modules may be installed from the left or right. For reasons of clarity, only the installation process from the right-hand side is shown in these instructions.



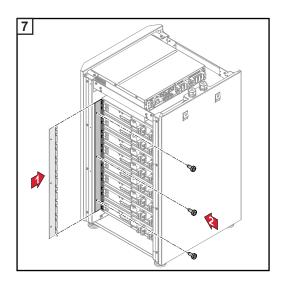


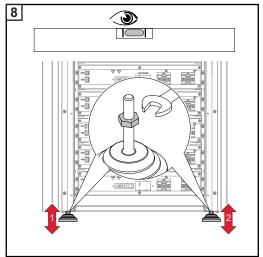



* The fastening materials are not part of the scope of supply

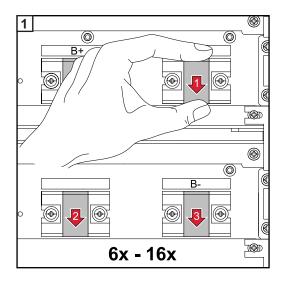

Installing the controller in the battery cabinet and connecting the cables

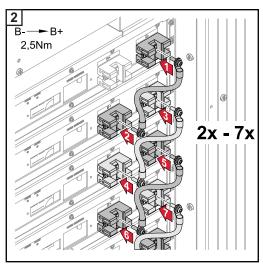


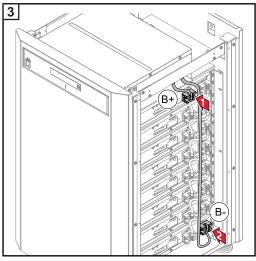


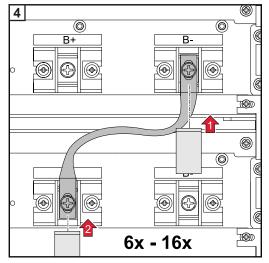


Installing the battery modules in the battery cabinet

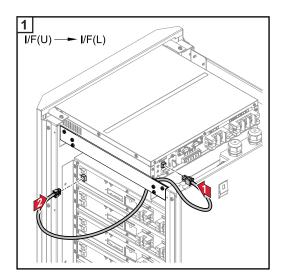

At least three and a maximum of eight battery modules can be installed in the battery cabinet.

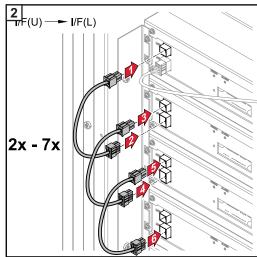


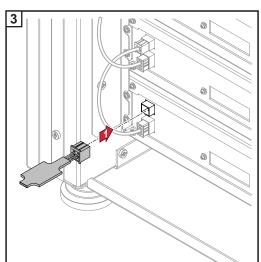


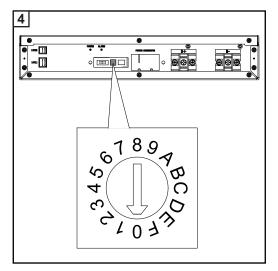


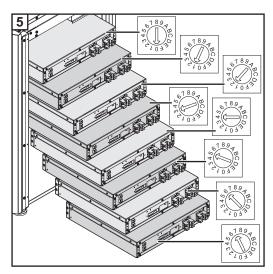
Wiring up the battery modules

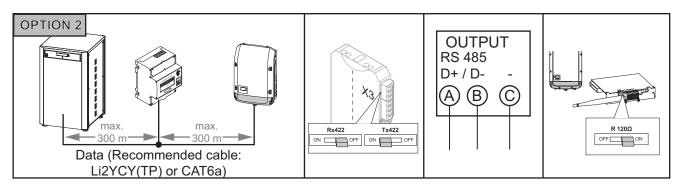


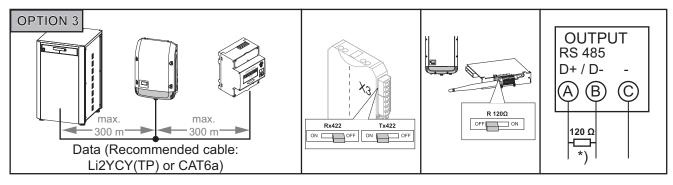




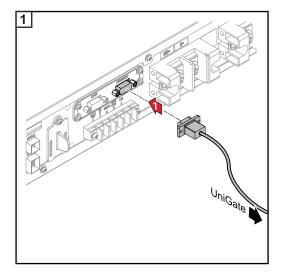


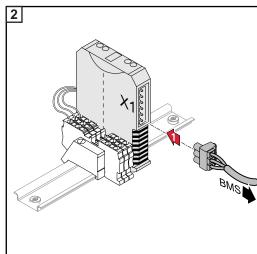

Connecting the data line

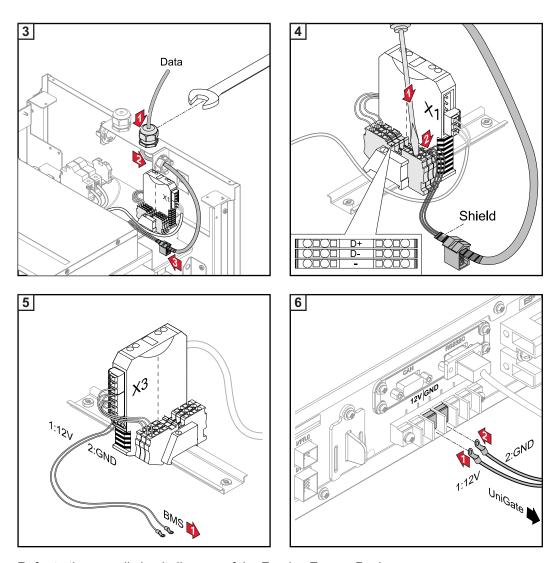




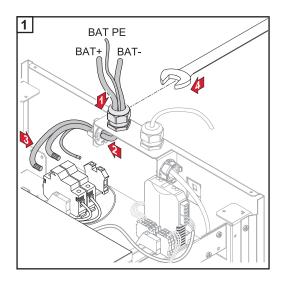
Connecting the Modbus cables

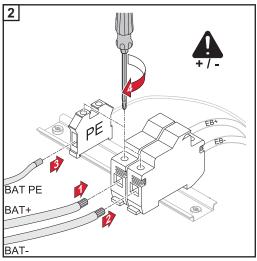

The terminating resistor must be set according to how the individual devices are configured (see diagram below).

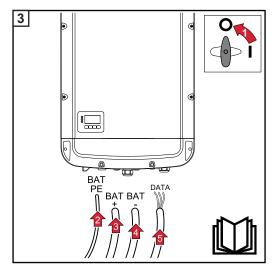


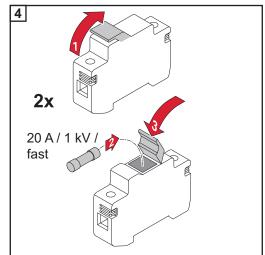


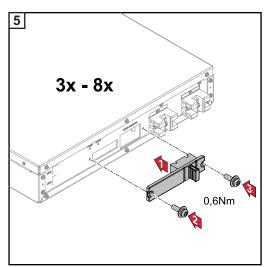
*) The R 120 Ohm terminating resistor is included with the Fronius Smart Meter

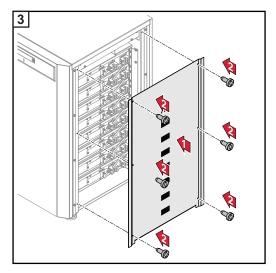


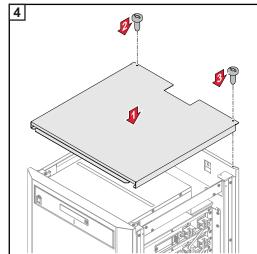





Refer to the overall circuit diagram of the Fronius Energy Package


Establishing a connection to the inverter


Closing the battery cabinet



Check the voltage between $U_{B\text{-}}$ and $U_{B\text{+}}$

nstalled battery nodules	U _{min}	U _{max}
3	100 V	175 V
4	130 V	230 V
5	160 V	290 V
6	200 V	345 V
7	230 V	400 V
8	260 V	460 V

2 Check all ground connections

Fitting the inverter mounting bracket

Safety

WARNING! An electric shock can be fatal. Danger due to residual voltage in capacitors. Wait for the capacitors to discharge. The discharge time is five minutes.

CAUTION! Risk of damage to the inverter from dirt or water on the terminals and contacts of the connection area.

- When drilling, ensure that terminals and contacts in the connection area do not become dirty or wet.
- Without a power stage set, the mounting bracket does not conform to the protection class of the inverter as a whole and so must not be installed without the power stage set.

The mounting bracket should be protected from dirt and moisture during installation

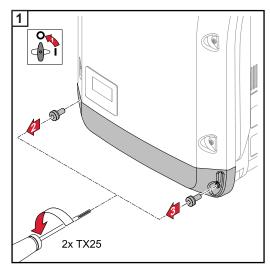
NOTE! Degree of protection IP 65 is only applicable if

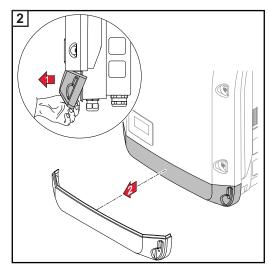
- the inverter is placed in the mounting bracket and permanently attached using screws□
- the cover for the data communication area is permanently attached to the inverter with screws.

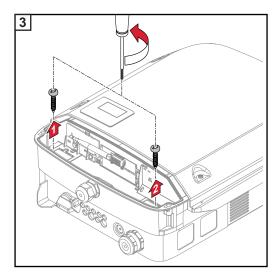
Degree of protection IP 20 applies to the mounting bracket with no inverter.

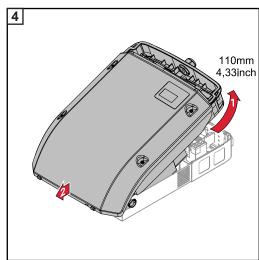
Selecting wall plugs and screws

IMPORTANT! Different fixings may be required to fit the mounting bracket depending on the type of underlying surface. Fixings are therefore not included in the scope of supply of the inverter. The installer is responsible for selecting the right type of fixing.

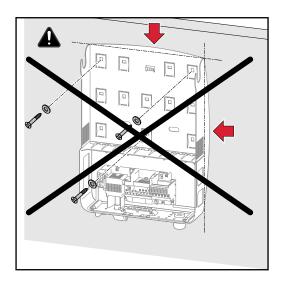

Recommended screws

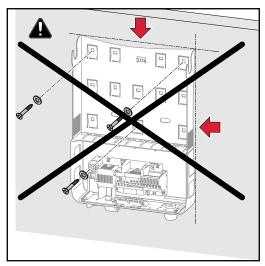

To install the inverter, the manufacturer recommends the use of steel or aluminium screws with a diameter of 6 - 8 mm.


Opening the inverter

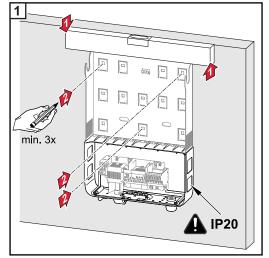


WARNING! An inadequate ground conductor connection can cause serious injury or damage. The housing screws provide a suitable ground conductor connection for grounding the housing and must NOT be replaced by any other screws that do not provide a reliable ground conductor connection.

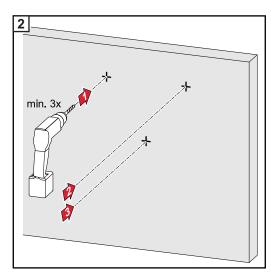


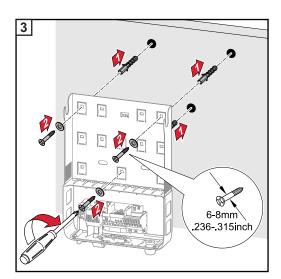


Do not warp or deform the mounting bracket



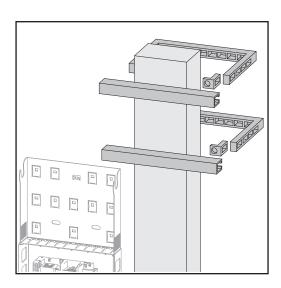
NOTE! When fitting the mounting bracket to the wall, ensure that the mounting bracket does not become warped or deformed.





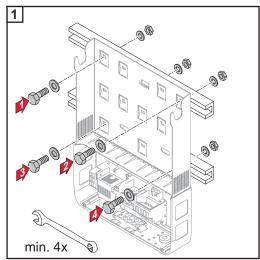
Fixing the mounting bracket to a wall

Tip: Install the inverter such that its display is at eye level



NOTE! When mounting the mounting bracket on the wall, ensure that the mounting bracket does not become warped or deformed.

Fitting the mounting bracket to a mast or support



When installing the inverter on a mast or support, Fronius recommends the "Pole Clamp" kit from Rittal GmbH (order no. SZ 2584.000).

This kit enables the inverter to be installed on round or rectangular masts with the following diameters: \varnothing from 40 to 190 mm (round mast), \square from 50 to 150 mm (rectangular mast)

Fitting the mounting bracket to metal supports

The mounting bracket must be secured to at least four points.

Connecting the inverter to the public grid (AC side)

Safety

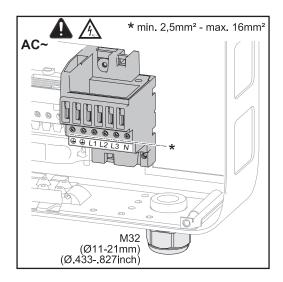
WARNING! Incorrect operation or poorly executed work can cause serious injury or damage. Commissioning of the hybrid system may only be carried out by trained personnel in accordance with the technical regulations. Read the Installation and Operating Instructions before installing and commissioning the equipment.

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules that are exposed to light.

- Ensure that both the AC side and the DC side of the inverter are de-energised before carrying out any connection work.
- Only an authorised electrical engineer is permitted to connect this equipment to the public grid.

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules or battery.

- The DC main switch is only to be used to de-energise the power stage set. The connection area is still live when the DC main switch is switched off.
- Ensure that the power stage set and connection area are disconnected from one another before carrying out any maintenance or service tasks.
- The power stage set is only to be disconnected from the mounting bracket once it is de-energised.
- Maintenance and servicing in the power stage set of the inverter must only be carried out by Fronius-trained service technicians.



CAUTION! Risk of damage to the inverter as the result of incorrectly tightened terminals. Incorrectly tightened terminals can cause heat damage to the inverter that may result in a fire. When connecting AC and DC cables, ensure that all the terminals are tightened to the specified torque.

Monitoring the Grid

IMPORTANT! The resistance in the leads to the AC-side connection terminals must be as low as possible for optimal functioning of grid monitoring.

AC terminals

PE Ground conductor / grounding

L1-L3 Phase conductor

N Neutral conductor

Max. cross-section of each conductor cable:

16 mm²

Min. cross-section of each conductor cable: in accordance with the fuse rating on the AC side, but at least 2.5 mm²

The AC cables can be connected to the AC terminals without ferrules.

In the case of an AC cable with a cross-section of 16 mm², ferrules can be either not used or only used to a limited extent depending on the type of ferrule and crimping.

Type of AC cable

The following types of AC cable can be connected to the AC terminals of the inverter:

- copper or aluminium: round, single wire
- Copper: round, finely stranded up to conductor category 4

Connecting aluminium cables

The AC-side terminals are suitable for connecting single-wire, round aluminium cables. Because of the formation of a non-conductive oxide layer due to the reaction of aluminium with air, the following points must be considered when connecting aluminium cables:

- the reduced rated currents for aluminium cables
- the connection conditions listed below

NOTE! Always follow the cable manufacturer instructions when using aluminium cables.

NOTE! When designing cable cross-sections, take local regulations into account.

Connection conditions:

Carefully clean the oxide layer from the bare end of the cable by scraping it, e.g. with a knife

IMPORTANT! Do not use brushes, files or emery paper, as the aluminium particles get trapped and can be transferred to other conductors.

- Once the oxide layer is removed, rub the end of the cable with a neutral grease, such as non-acidic and non-alkaline Vaseline
- [3] Immediately connect the cable end to the terminal

IMPORTANT! Repeat the procedure if the cable has been disconnected and is to be reconnected.

Cross-section of the AC cable

When using a standard M32 metric screw joint with reducer: cable diameter 7 - 15 mm

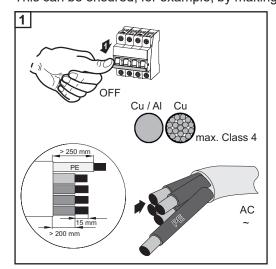
When using an M32 metric screw joint (reducer removed): cable diameter 11 - 21 mm

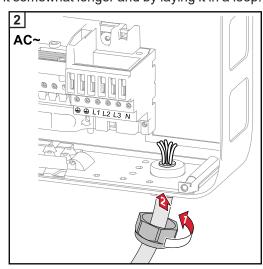
(with a cable diameter of 11 mm the strain-relief force is reduced from 100 N to a maximum of 80 N)

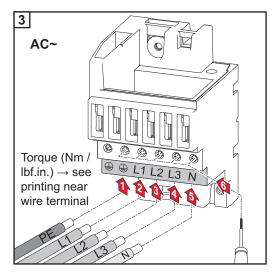
With cable diameters greater than 21 mm, the M32 screw joint must be replaced by an M32 screw joint with a larger clamping area - item number: 42,0407,0780 - strain-relief M32x15 KB 18-25.

Connecting the inverter to the public grid (AC)

NOTE! Form loops with the AC cables when connecting them to the AC terminals.

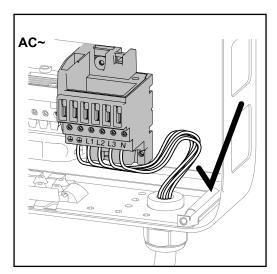

When securing the AC cables using a metric screw joint, ensure that the loops do not protrude beyond the connection area. Otherwise, under certain circumstances it may no longer be possible to close the inverter.

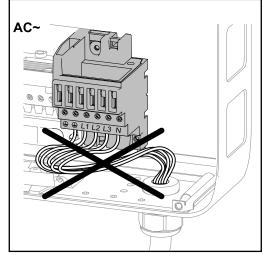


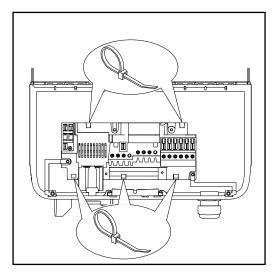

- Ensure that the grid neutral conductor is grounded. This may not be the case for IT grids (insulated grids with no grounding); it will then not be possible to use the inverter.
- In order to use the inverter, the neutral conductor must be connected.

 A neutral conductor that is too small may adversely affect the grid power feed operation of the inverter. The neutral conductor must therefore be the same size as the other live conductors.

IMPORTANT! The PE ground conductor of the AC cable must be laid in such a way that it is the last to be disconnected in the event that the strain-relief device should fail. This can be ensured, for example, by making it somewhat longer and by laying it in a loop.

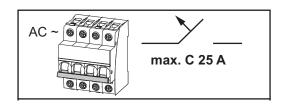


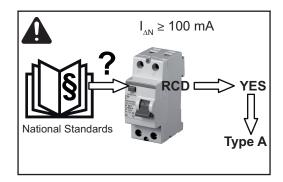



NOTE! Observe the torque values marked on the side underneath the terminals.

If AC cables are laid over the shaft of the DC main switch or across the connection block of the DC main switch, they may be damaged when the inverter is swung in, or they may even prevent the inverter from being swung in.

IMPORTANT! Do not lay AC cables over the shaft of the DC main switch or across the connection block of the DC main switch.





If overlength AC or DC cables are to be laid in loops in the connection area, attach the cables with cable ties to the eyelets provided on the top and bottom of the connection block.

Maximum fuse rating on alternating current side

Inverter	Phases	AC power	Maximum fuse rating	Recommend- ed fuse rat- ing
Fronius Symo Hybrid 3.0	3 + N	3000 W	4 x C 25 A	4 x C 16 A
Fronius Symo Hybrid 4.0	3 + N	4000 W	4 x C 25 A	4 x C 16 A
Fronius Symo Hybrid 5.0	3 + N	5000 W	4 x C 25 A	4 x C 16 A

NOTE! Local regulations, the energy supply company or other factors may require an earth-leakage circuit breaker in the grid line. For this situation, a type A earth-leakage circuit breaker with a tripping current of at least 100 mA is generally adequate. In particular cases, and depending on local factors, however, the type A earth-leakage circuit breaker may trip at the wrong time. For this reason, Fronius recommends that an earth-leakage circuit breaker that is suitable for frequency converters should be used.

Connecting solar module strings to the inverter (DC side)

Safety

WARNING! Incorrect operation or poorly executed work can cause serious injury or damage. Commissioning of the hybrid system may only be carried out by trained personnel in accordance with the technical regulations. Read the Installation and Operating Instructions before installing and commissioning the equipment.

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules that are exposed to light.

- Ensure that both the AC side and the DC side of the inverter are de-energised before carrying out any connection work.
- Only an authorised electrical engineer is permitted to connect this equipment to the public grid.

WARNING! An electric shock can be fatal. Danger due to grid voltage and DC voltage from solar modules or battery.

- The DC main switch is only to be used to de-energise the power stage set.
 The connection area is still live when the DC main switch is switched off.
- Ensure that the power stage set and connection area are disconnected from one another before carrying out any maintenance or service tasks.
- The power stage set is only to be disconnected from the mounting bracket once it is de-energised.
- Maintenance and servicing in the power stage set of the inverter must only be carried out by Fronius-trained service technicians.

CAUTION! Risk of damage to the inverter as the result of incorrectly tightened terminals. Incorrectly tightened terminals can cause heat damage to the inverter that may result in a fire. When connecting AC and DC cables, ensure that all the terminals are tightened to the specified torque.

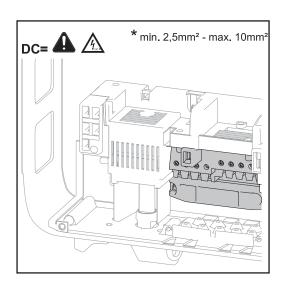
CAUTION! Risk of damage to inverter from overload.

- The maximum amperage when connecting to a single DC terminal is 32 A.
- Connect the DC+ and DC- cables to the DC+ and DC- terminals on the inverter, taking care to ensure that the polarity is correct.
- The maximum DC input voltage must not exceed 1000 V DC.

NOTE! The solar modules connected to the inverter must comply with the IEC 61730 Class A standard.

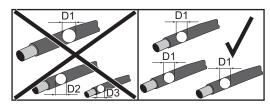
NOTE! When photovoltaic modules are exposed to light they supply current to the inverter.

General comments regarding solar modules


To enable suitable solar modules to be chosen and to use the inverter as efficiently as possible, it is important to bear the following points in mind:

- If insolation is constant and the temperature is falling, the open circuit voltage of the solar modules will increase. The open circuit voltage must not exceed 1000 V. If the open circuit voltage exceeds the specified values, the inverter will be destroyed and no warranty claims will be entertained.
- The temperature coefficients on the solar modules data sheet must be observed
- More exact values for dimensioning the solar modules can be provided by suitable calculation programs, like the Fronius Solar.configurator (which can be downloaded from www.fronius.com).

NOTE! Before you connect up the solar modules you should check that the voltage specified by the manufacturer corresponds to the actual measured voltage.


DC terminals

Max. cross-section of each DC cable: 10 mm²

Min. cross-section of each DC cable: 2.5 mm²

The DC cables can be connected to the DC terminals without ferrules.

NOTE! To ensure effective strain relief of the solar module strings, only use cables with identical cross-sections.

In the case of a DC cable with a cross-section of 16 mm², ferrules can be either not used or only used to a limited extent depending on the type of ferrule and crimping.

Connecting aluminium cables

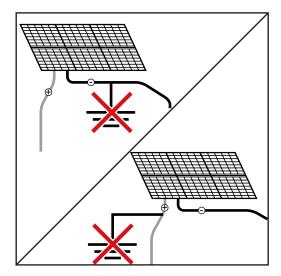
The DC-side terminals are suitable for connecting single-wire, round aluminium cables. Because of the formation of a non-conductive oxide layer due to the reaction of aluminium with air, the following points must be considered when connecting aluminium cables:

- the reduced rated currents for aluminium cables
- the connection conditions listed below

NOTE! Always follow the cable manufacturer instructions when using aluminium cables.

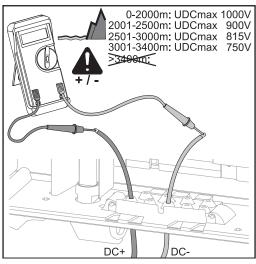
NOTE! When designing cable cross-sections, take local regulations into account.

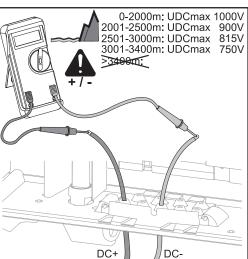
Connection conditions:


Carefully clean the oxide layer from the bare end of the cable by scraping it, e.g. with a knife

IMPORTANT! Do not use brushes, files or emery paper, as the aluminium particles get trapped and can be transferred to other conductors.

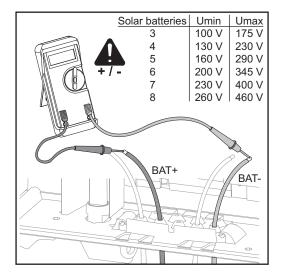
- Once the oxide layer is removed, rub the end of the cable with a neutral grease, such as non-acidic and non-alkaline Vaseline
- Immediately connect the cable end to the terminal


IMPORTANT! Repeat the procedure if the cable has been disconnected and is to be reconnected.

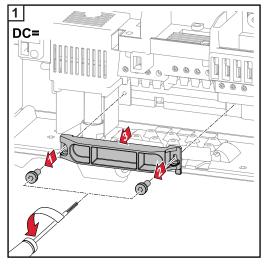

Do not ground the poles of the solar modules

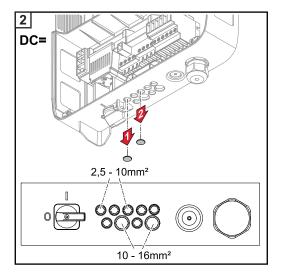
The Hybrid inverter is a transformerless device. The individual poles of the solar modules must not be grounded.

Connecting solar module strings to the inverter (DC)

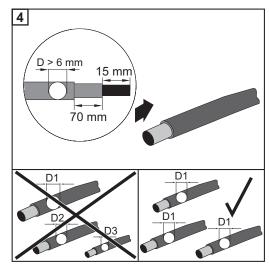


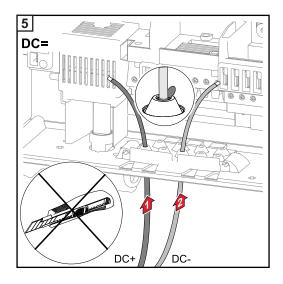
CAUTION! Risk of possible damage to the inverter! Check the polarity and voltage of the solar module strings before making the connection. The voltage must not exceed the following values:

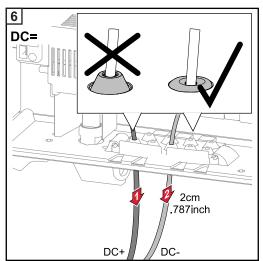

- when installed between 0 and 2000 m above sea level: 1000
- when installed between 2001 and 2500 m above sea level: 900 V
- when installed between 2501 and 3000 m above sea level: 815 V
- when installed between 3001 and 3400 m above sea level: 750 V

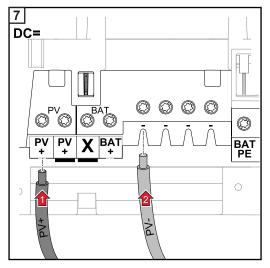


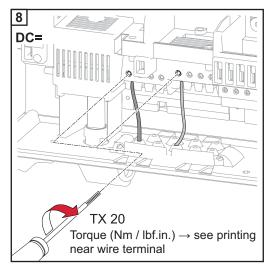

IMPORTANT! Check the voltage of the battery modules.

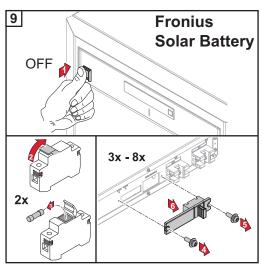


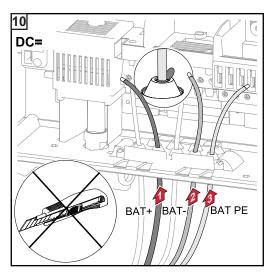

NOTE! Only break out as many break points as there are cables.

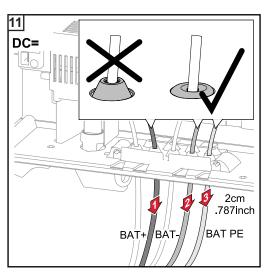


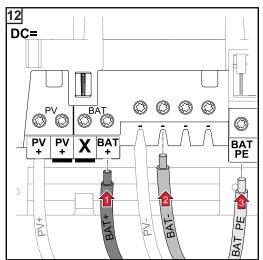


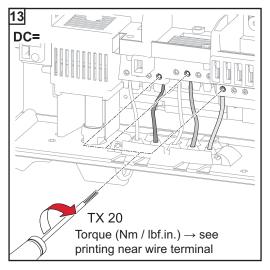


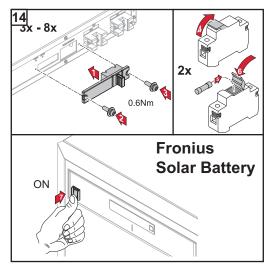


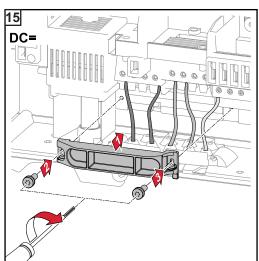


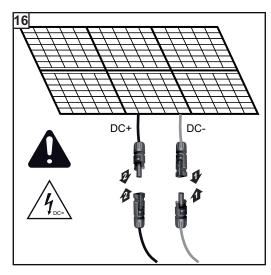


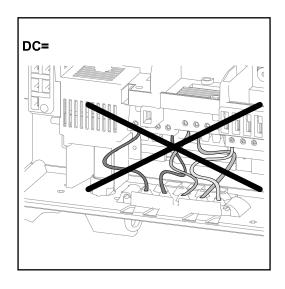


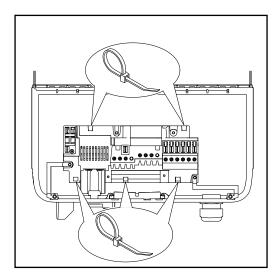




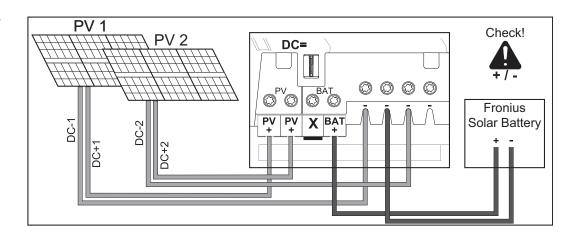




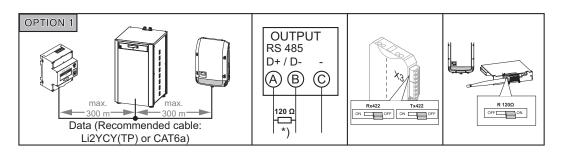


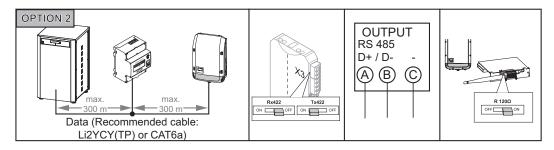


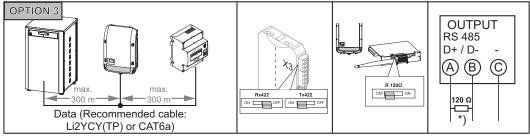
Routing the DC cables


If DC cables are laid over the shaft of the DC main switch or across the connection block of the DC main switch, they may be damaged when the inverter is swung in or they may even prevent the inverter from being swung in.

IMPORTANT! Do not lay DC cables over the shaft of the DC main switch or across the connection block of the DC main switch!


If overlength AC or DC cables are to be laid in loops in the connection area, attach the cables with cable ties to the eyelets provided on the top and bottom of the connection block.


Overview of Fronius Energy Package DC cabling



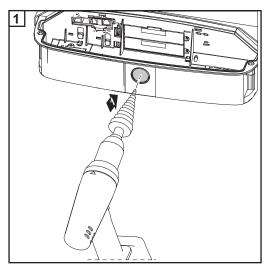
Connecting Fronius Symo Hybrid, Fronius Solar Battery and Fronius Smart Meter

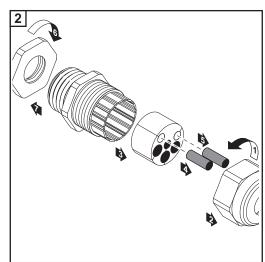
Connecting Fronius Symo Hybrid, Fronius Solar Battery and Fronius Smart Meter This shows the connection of the data line between the Fronius Smart Meter, Fronius Solar Battery and Fronius Symo Hybrid:

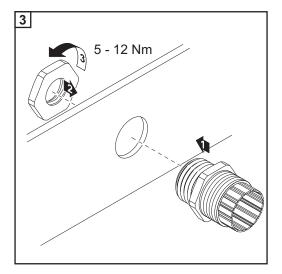
* The terminating resistor is included with the Fronius Smart Meter

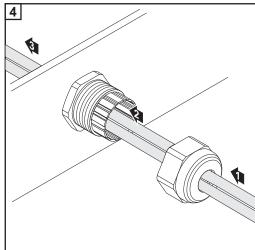
A DC connection and ground connection must also be established between the battery and the inverter. The connection of the individual lines was illustrated in the preceding chapters. The installer is responsible for choosing the cables.

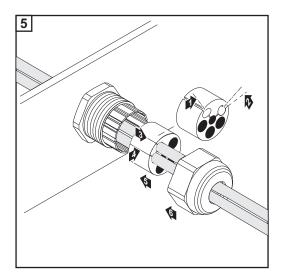
Data communication

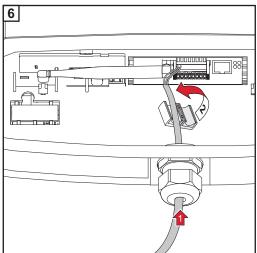

Routing data communication cables

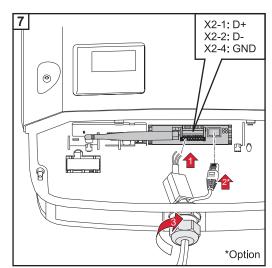

IMPORTANT! Operating the inverter with a free broken-out option card slot is not permitted.


An appropriate blanking cover (42,0405,2020) to cover the slot is available from Fronius as an option.


IMPORTANT! Note the following if data communication cables are being introduced into the inverter:


- depending on the number and cross-section of the data communication cables that are being introduced, take the relevant blanking plugs out of the sealing insert and insert the data communication cable.
- insert without fail the relevant blanking plugs into the free openings on the sealing insert.





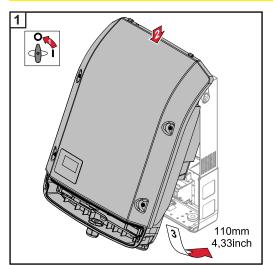
Attaching the inverter to the mounting bracket

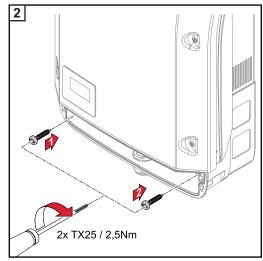
Attaching the inverter to the mounting bracket

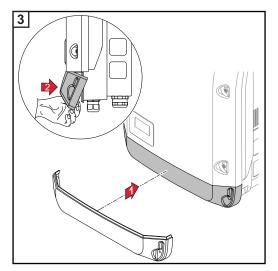
WARNING! An inadequate ground conductor connection can cause serious injury or damage. The housing screws provide a suitable ground conductor connection for grounding the housing and must NOT be replaced by any other screws that do not provide a reliable ground conductor connection.

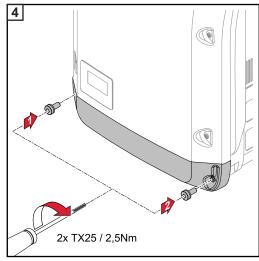
The side sections of the housing lid are designed to function as holding and carrying handles.

NOTE! For safety reasons, the inverter is fitted with a latch that prevents the inverter from being swung into the mounting bracket unless the DC main switch is switched off.


- Never attach the inverter to the mounting bracket or swing it in unless the DC main switch is switched off.
- Never use force to attach the inverter or swing it in.


The fastening screws in the data communication area of the inverter are used for securing the inverter to the mounting bracket. Correctly tightened fastening screws are a prerequisite if proper contact is to be established between the inverter and mounting bracket.

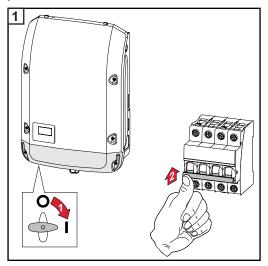


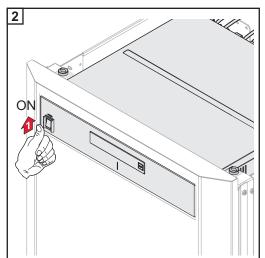

CAUTION! If the fastening screws are not tightened correctly, then the inverter is at risk of being damaged.

Fastening screws that are not correctly tightened can result in arcs occurring when the inverter is in operation, which in turn can cause fires. Always use the specified torque when tightening the fastening screws.

Starting for the first time

Starting the inverter for the first time

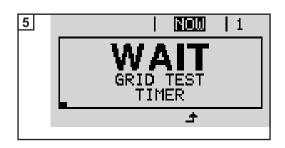


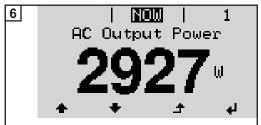

WARNING! Incorrect operation or poorly executed work can cause serious injury or damage. Commissioning of the hybrid system may only be carried out by trained personnel in accordance with the technical regulations. Read the Installation and Operating Instructions before installing and commissioning the equipment.

When starting the inverter for the first time, it is necessary to select various setup settings.

If setup is interrupted before it is complete, it can be restarted by means of an AC reset. An AC reset is performed by switching the automatic circuit breaker off and then on again.

The country setup can only be set when starting the inverter for the first time. If it becomes necessary to modify the country setup at a later date, please contact your Technical Support team.



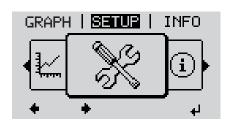


* Available country setups

50 HZ	International 50 Hz	FTS	
60 HZ	International 60 Hz	GB	Great Britain
ATS	Österreich: Anlagengröße < 3,68 kVA	GR	Ελλάδα
ATM	Österreich: Anlagengröße > 3,68 kVA	HR	Croatia
ATL	Österreich: Anlagengröße > 13,8 kVA	HU	Magyarország
AU	Australia	ΙE	Éire / Ireland; Malta
BE	Belgique / België	IT4	Italia: Dimensioni impianto <= 11,08 kVA
BR2	Brasil: > 3,6 kVA	IT4B	Italia: Dimensioni impianto <= 11,08 kVA con la batteria
CH	Schweiz / Suisse / Svizzera / Svizra	IT5	Italia: Dimensioni impianto >= 11,08 kVA

CL	Chile	IT5B	Italia: Dimensioni impianto >= 11,08 kVA con la batteria
CY	Cyprus	NIE1	Nordirland
CZ	Česko	NL	Nederland
DENS S	Deutschland: Anlagengröße < 3,68 kVA	NZ	New Zealand
DENSM	Deutschland: Anlagengröße > 3,68 kVA	PF	Polynésie française
DENS L	Deutschland: Anlagengröße > 13,8 kVA	SE	Sverige
DKA1	Danmark: System size <11 kVA	TR	Türkiye
DKA2	Danmark: Anlægsstørrelse 11 - 50 kVA	TS11	
EP50	Emergency power 50 Hz	ZA	South Africa
EP60	Emergency power 60 Hz		
ES	España		
ESOS	Territorios españoles en el extranjero (Spanish Oversea Islands)		
FR	France		
FROS	Territoire d'Outre-Mer (French Oversea Islands)		

Activating the emergency power function

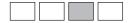

Prerequisites for emergency power mode

In order to use the hybrid inverter's emergency power function, the following prerequisites must be fulfilled:

- Correct cabling of the emergency power system in the electrical installation (see document entitled "Fronius Energy Package - Examples of emergency power switchover")
- The meter (Fronius Smart Meter) must be installed at the feed-in point and configured
- Latest firmware on the inverter if required, perform a firmware update
- Select Alternative (emergency power) setup in the CONFIG menu on the inverter (see Installation Instructions)
- Change the required settings in the emergency power area in the IO mapping menu (Fronius system monitoring web page → Settings → IO mapping → Emergency power)
- Set the system to "Auto" in the emergency power system overview (Fronius system monitoring web page → Settings → System overview → Emergency power operating mode)

If there are additional inverters in the system, these should be installed outside of the emergency power circuit, but within that for the Fronius Smart Meter.

Accessing the CONFIG menu



↑ Press the 'Menu' key

The menu level appears.

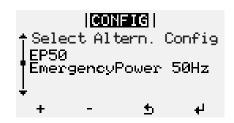
Press the unassigned 'Menu / Esc' key 5 times

'Access Code' is displayed in the 'CODE' menu; the first digit starts flashing. The access code for the CONFIG menu is: 39872

- + = 3 Enter the access code for the CON-FIG menu: Use the 'Up' and 'Down' keys to select a value for the first digit of the code
- 4 Press the 'Enter' key

The second digit starts flashing.

Repeat steps 3 and 4 for the second, third, fourth and fifth digits of the access code until...


the selected code starts flashing.

Press the 'Enter' key

The first parameter of the CONFIG menu is displayed

Selecting alternative (emergency power) setup The setups with the designation "EmergencyPower" are available as "Alternative (emergency power) setups":

- EmergencyPower 50Hz: for all countries with a nominal frequency of 50 Hz
- EmergencyPower 60Hz: for all countries with a nominal frequency of 60 Hz

- + Use the 'Up' and 'Down' keys to select the Alternative (emergency power) setup
- Press the 'Enter' key

Fronius Ohmpilot and emergency power mode

The Fronius Ohmpilot is not suitable for emergency power mode.

If a Fronius Ohmpilot is used, it should be installed outside of the emergency power circuit

IMPORTANT! For control-related reasons, the Ohmpilot cannot be operated in emergency power situations. In the event of a power failure, this could cause the emergency power supply to fail. To avoid loss of power:

- switch off the circuit breaker on the Fronius Ohmpilot (if fitted)
- or set heating element measurement on the Ohmpilot to manual (under 'General General Settings Heater 1 Manual') and turn off the 'Legionella prevention (h)' and 'Adapt day curve' settings (under 'General General Settings Heater 1'). The power level required for these functions exceeds the power limits in emergency power mode. Since these functions are blocked when emergency power mode starts, these settings cannot be changed during a power failure and must be specified beforehand.
- do not turn on boost mode on the Ohmpilot

Installing Fronius system monitoring – Overview

Safety

WARNING! Operating the equipment incorrectly can cause serious injury and damage. Do not use the functions described until you have thoroughly read and understood the following documents:

- these operating instructions
- all the operating instructions for the system components, especially the safety rules

NOTE! Knowledge of networking systems is required in order to install Fronius system monitoring.

Using for the first time

NOTE! The Fronius Solar.web App makes it much easier to set up Fronius system monitoring when using it for the first time.

The Fronius Solar.web App is available in the relevant App store.

or

"https://wizard.solarweb.comvisit "https://wizard.solarweb.com".

IMPORTANT! In order to establish a connection to Fronius system monitoring, the end device in question (e.g. laptop, tablet, etc.) must be set up as follows:

- "Obtain IP address automatically (DHCP)" must be activated
- Switch the device to Service mode
 - Activate the WIFI access point via the Setup menu on the inverter.

The inverter establishes the WLAN access point. The WLAN access point remains open for 1 hour.

Installation using the Solar.web App

Download the Fronius Solar.web App.

Run the Fronius Solar.web App.

Installation using a web browser

Connect the end device to the WLAN access point.

SSID = FRONIUS_239.xxxxx (4 - 8 digits)

- Search for a network with the name "FRONIUS_239.xxxxx".
- Establish a connection to this network
- Enter the password 12345678.

(Alternatively, connect the end device and inverter using an Ethernet cable.)

Enter the following in the browser: http://datamanager

or 192.168.250.181 (IP address for

WLAN connection)

or

169.254.0.180 (IP address for LAN connection).

The Setup wizard start page is displayed.

If you run the technician wizard, always remember to make a note of the assigned service password. This service password is required to enter settings in the "System overview" and "DNO Editor" menus as well as for advanced battery settings.

If the technician wizard is not run, no specifications regarding power reduction are set and hybrid mode is not possible (charging and discharging of the Fronius Solar Battery).

Run the technician wizard and follow the instructions.

IMPORTANT! The Solar Web wizard needs to be run in order to activate the battery and, if necessary, the Smart Meter. If the battery is not activated this may result in deep discharge and, therefore, permanent damage to the battery.

Run the Solar Web wizard and follow the instructions.

The Fronius Solar.web homepage

or

the Fronius system monitoring web page is displayed.

Information to help you work through the Solar Web wizard The solar web wizard consists of 5 steps:

1. General

General system data (e.g. system name) is entered here

2. Service password

Enter (and make a note of) the service password

3. IO assignment

Settings for the IO interface are entered (see also "Fronius Energy Package - IO assignment" Operating Instructions)

4. System overview

Settings for the entire PV system are entered (see also "Fronius Energy Package - System overview" Operating Instructions)

5. Dynamic power

Settings for dynamic power reduction are entered (see also "Fronius Energy Package - Dynamic power reduction" Operating Instructions)

Once you have worked your way through the Solar Web wizard, an automatic process is triggered to calibrate all the components. This involves charging the Fronius Solar Battery fully. After that, the system automatically starts in the set operating mode.

This calibration charging process is also performed automatically during actual operation after a number of charging and discharging cycles. When this calibration charge is performed depends on a number of different factors, such as the average state of charge or the energy throughput through the battery. The time can therefore vary depending on the time of year as well.

If the "permit battery charging from PSC grid" setting is deactivated, this calibration charging process relies exclusively on energy from the photovoltaic system when operating under normal conditions. Depending on the insolation conditions and size of the systems concerned, the charging process can take a very long time.

If the "permit battery charging from PSC grid" setting is activated, the calibration charging process is performed by drawing a constant current from the photovoltaic system and DSO (distribution system operator) grid.

IMPORTANT! The automatic process for fully charging the battery may result in energy being drawn from the DSO grid. The process can take several hours and cannot be aborted.

Notes regarding maintenance

Maintenance

NOTE! When installed outdoors in a horizontal position: once a year, check that all screw joints are tight!

Maintenance and servicing may only be carried out by Fronius-trained service technicians.

Cleaning

Clean the inverter and the display as required with a damp cloth. Do not use cleaning agents, abrasives or solvents to clean the inverter.

Fronius Worldwide - www.fronius.com/addresses

Fronius International GmbH 4600 Wels, Froniusplatz 1, Austria E-Mail: pv-sales@fronius.com http://www.fronius.com Fronius USA LLC Solar Electronics Division 6797 Fronius Drive, Portage, IN 46368 E-Mail: pv-us@fronius.com http://www.fronius-usa.com

Under http://www.fronius.com/addresses you will find all addresses of our sales branches and partner firms!